Distrontium Nickel Orthophosphate

BRAHIM ELBALI AND ALI BOUKHARI

Laboratoire de Chimie du Solide Appliqué, Departement de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco

ELIZABETH M. HOLT

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA

JILALI ARIDE

Laboratoire de Physico-Chimie des Matèriaux, ENS Takaddoum, BP 5118, Rabat, Morocco

(Received 10 March 1992; accepted 30 November 1992)

Abstract

The Ni²⁺ cations in Sr₂Ni(PO₄)₂ occupy two sites of octahedral geometry and are separated by distances of greater than 4.8 Å [average Ni—O bond 2.08(2) Å]. Strontium shows eightfold coordination with irregular geometry and an average Sr—O distance of 2.64(2) Å.

Comment

Single-crystal X-ray analyses of orthophosphates $M_3(PO_4)_2$, where M is an alkaline-earth or bivalent transition metal, have been reported for α -Ca₃(PO₄)₂ (Mathew, Schroeder, Dickens & Brown, 1977), β -Ca₃-(PO₄)₂ (Dickens, Schroeder & Brown, 1974), Ca₃(PO₄)₂ (Dickens, Schroeder & Bonel, 1978), α -Sr₃(PO₄)₂ (high pressure; Roux, Loüer & Bonel, 1978), α -Sr₃(PO₄)₂ and Ba₃(PO₄)₂ (Zachariasen, 1948), Co₃(PO₄)₂ (Anderson, Kostiner, Miller & Rea, 1975), Ni₃(PO₄)₂ (Calvo & Fagiani, 1975), Cu₃(PO₄)₂ (Shoemaker, Anderson & Kostiner, 1977), α -Zn₃(PO₄)₂ (Calvo, 1965), β -Zn₃(PO₄)₂ (Stephens & Calvo, 1967), Fe₃(PO₄)₂ (Kostiner & Rea, 1974), Mg₃(PO₄)₂ (Nord & Kierkegaard, 1968) and β' -Mn₃(PO₄)₂ (Stephens & Calvo, 1969).

Studies of mixed phosphates, $M'_x A_{3-x}(PO_4)_2$ (A = alkaline-earth metal and M' = divalent first-row transition element) are relatively uncommon and often do not include single-crystal data. However, the solid-state structures of SrCo₂(PO₄)₂ (Elbali, Boukhari, Holt & Aride, 1992), BaNi₂(PO₄)₂ (Cabrić, Zizić & Napijalo, 1982), α -CaZn₂(PO₄)₂ (Jakeman & Cheetham, 1988), Ca₃Cu₃(PO₄)₄ (Anderson, Kostiner & Ruszala,

0108-2701/93/061131-03\$06.00

1981), α -SrZn₂(PO₄)₂ (Hemon & Courbion, 1990) and BaCo₂(PO₄)₂ (Regnault, 1976) have been reported.

Sr₂Ni(PO₄)₂ exists in the solid state as sheets of PO₄³⁻ and Ni²⁺, parallel to (101) and linked in the (001) direction by O—Ni interactions (Fig. 1). These linkages define tunnels extending parallel to (010) and containing the Sr²⁺ ions. Ni1 is situated on an inversion center [average Ni—O distance 2.09(2) Å] and Ni2 in a general position (average Ni—O length 2.0 Å); both display distorted octahedral geometry. The three Sr atoms of the asymmetric unit show eightfold coordination with average Sr—O distances of 2.64(2) Å. The geometry of PO₄³⁻ is approximately tetrahedral [average P—O distance 1.54(2) Å].

Fig. 1. Projection of Sr₂Ni(PO₄)₂ down the [010] axis.

This structure is intermediate between those of Sr₃-(PO₄)₂ and Ni₃(PO₄)₂. The coordination number of strontium has changed from 12 and 10 in Sr₃(PO₄)₂ (Zachariasen, 1948) to eight. The Sr—O distances in Sr₃(PO₄)₂ (2.86, 2.66 Å) show the elongation expected with higher coordination. In Ni₃(PO₄)₂, Ni displays distorted octahedral geometry and the Ni—O distances are 2.078(2) and 2.084(2) Å.

Experimental

Crystat aata	
$Sr_2^{2+}Ni^{2+}(PO_4)_2^{3-}$	Mo $K\alpha$ radiation
$M_r = 423.89$	λ = 0.71069 Å

© 1993 International Union of Crystallography

Monoclinic	Cell parameters from 15	Table 2. Geometric parameters (Å, °)				
$P2_{1}/c$	reflections	Ni1-034 ⁱ	2 19 (2)	Sr1031 ^{vii}	2 61 (1)	
a = 11.631.(7) Å	$\theta = 10.48 - 17.43^{\circ}$	Ni1-O31 ⁱ	2.00 (2)	Sr1013 ^{iv}	2.56(1)	
h = 0.020(2)	$\mu = 182.32 \text{ mm}^{-1}$	Ni1-034 ⁱⁱ	2.19(2)	Sr1-O14 ^{iv}	2.68 (2)	
D = 9.929(2) A	T = 209 V	Ni1-O31 ⁱⁱ	2.00 (2)	Sr1-O14 ⁱⁱ	2.52 (2)	
c = 8.990 (2) A	1 - 290 K	Ni1-O21 ⁱⁱⁱ	2.07 (2)	Sr1-O23 ^{viii}	2.98 (2)	
$\beta = 97.63 \ (4)^{\circ}$	Irregular chunk	Ni1-O21 ^{iv}	2.07 (2)	Sr1-O32 ^{vii}	2.64 (1)	
V = 1029.1 (7) Å ³	$0.10 \times 0.10 \times 0.10$ mm	Ni2-O22 ^v	2.03 (2)	Sr1-O34 ^{vi}	2.62 (1)	
7 - 6	Yellow	Ni2—O12 ^{vi}	2.12 (2)	Sr1-O21 ^{viii}	2.63 (1)	
Z = 0		Ni2-O13 ^{vi}	2.14 (2)	Sr2	2.53 (2)	
$D_x = 4.103 \text{ Mg m}^{\circ}$		Ni2-O24 ^{iv}	2.03 (1)	Sr2	2.74 (2)	
		Ni2—O11 ^{iv}	2.08 (2)	Sr2—O11	2.55 (2)	
Data collection		Ni2—O33 ^{iv}	2.04 (2)	Sr2-014	2.92 (2)	
Duia concentra		P1-011	1.54 (2)	Sr2	2.44 (2)	
Syntex P3 automated	R _{int} = 0 ु	P1012	1.57 (2)	Sr2-O12 ^{iv}	2.53 (1)	
diffractometer	$\theta_{\rm max} = 30.0^{\circ}$	P1013	1.55 (1)	Sr2013 ^{v1}	2.51 (2)	
$\theta/2\theta$ scans	$h = -16 \rightarrow 16$	P1014	1.50 (2)	Sr2-O11	2.90 (2)	
Abcomption compation:	k = 0 14	P2O21	1.56 (2)	Sr3-031"	2.44 (1)	
Absorption conection.	$k = 0 \rightarrow 14$	P2—O22	1.49 (2)	Sr3—O12 ^M	2.58 (2)	
empirical	$l = 0 \rightarrow 13$	P2-023	1.51 (2)	\$r3—033 ¹⁷	2.48 (2)	
$T_{\rm min} = 0.68, T_{\rm max} = 0.84$	3 standard reflections	P2—O24	1.53 (2)	Sr3	2.76 (2)	
4363 measured reflections	monitored every 97	P3-031	1.58 (2)	Sr3–O22 ¹	2.79 (2)	
1363 independent reflections	reflections	P3-032	1.52 (2)	Sr3	2.59 (2)	
4505 independent reflections	internation suggistions (507	P3-033	1.54 (2)	Sr3-032 ⁴	2.54 (1)	
1616 observed reflections	intensity variation: $<5\%$	P3-034	1.54 (1)	Sr3-034	2.83 (2)	
$[I > 3.0 \sigma(I)]$		Symmetry codes:	(1) $x - 1, y - 1, z$; (ii) $1 - x$, $1 - y$, $1 - z$	(m) x - 1,	
		$\frac{1}{2} - y, \frac{1}{2} + z;$ (iv) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z;$ (v) $1 - x, 1 - y, -z;$ (vi) $x, \frac{3}{2} - y$				
Refinement		$\frac{1}{2} + z$; (vii) $2 - x$, $1 - y$, $1 - z$; (viii) x , $\frac{1}{2} - y$, $\frac{1}{2} + z$; (ix) $x - 1$, $\frac{3}{2} - y$,				
Rejinement		$\frac{1}{2} + z$.				
Refinement on F	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$	-				
Final $R = 0.062$	$\Delta \rho_{\rm min} = 0.28 {\rm e} {\rm \AA}^{-3}$	mi			c	
w P = 0.084	Atomic scattering factors	i ne title compo	ound was obtain	ed by the direct fusion	n of a very	
WA - 0.004	Atomic scattering factors	pure (\gg 99%) mixture of SrCO ₃ , NiCO ₃ and (NH ₄) ₂ HPO ₄ (stoi-				
S = 0.42	from International Tables	chiometry 3.3.4	1) heated to 117	3 K to effect decarbor	ation The	

The title compound was obtained by the direct fusion of a very pure (\gg 99%) mixture of SrCO₃, NiCO₃ and (NH₄)₂HPO₄ (stoichiometry 3:3:4), heated to 1173 K to effect decarbonation. The mixture was then heated in a platinum crucible until fusion at 1573 K before being cooled slowly (10 K h⁻¹). The powder thus obtained contained two types of crystals distinguishable by their color (light and dark yellow). The light-yellow crystals correspond to Sr₂Ni(PO₄)₂.

The data were collected using a variable scan rate and a scan width from 1.2° below $K\alpha_1$ to 1.2° above $K\alpha_2$. Refinement was performed using full-matrix least-squares methods.

The authors express their thanks to the National Science Foundation for assistance in the form of a grant to permit collaborative investigation.

Lists of structure factors, anisotropic thermal parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55925 (42 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1013]

References

- Anderson, J. B., Kostiner, E., Miller, M. C. & Rea, J. R. (1975). J. Solid State Chem. 14, 372–377.
- Anderson, J. B., Kostiner, E. & Ruszala, F. A. (1981). J. Solid State Chem. 39, 29-34.
- Blessing, R. H. (1986). Crystallogr. Rev. 1, 3-58.
- Cabrić, B., Zizić, B. & Napijalo, M. Lj. (1982). J. Cryst. Growth, 60, 169-171.
- Calvo, C. (1965). Can. J. Chem. 43, 436-445.
- Calvo, C. & Faggiani, R. (1975). Can. J. Chem. 53, 1516-1520.
- Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.

S = 0.421616 reflections 179 parameters $w = 1/\sigma(F)^2$ $(\Delta/\sigma)_{max} = 0.64$

Data collection: Syntex-Nicolet P3 data collection package. Cell refinement: Syntex-Nicolet P3 data collection package. Data reduction: DREAM (Blessing, 1986). Program(s) used to solve structure: MULTAN (Main et al., 1980). Program(s) used to refine structure: XRAY78 (Stewart, 1978). Molecular graphics: CHEM3D (Rubenstein & Rubenstein, 1987).

2.2B)

for X-ray Crystallogra-

phy (1974, Vol. IV, Table

Table 1. Fractional atomic coordinates and equivalentisotropic thermal parameters (Ų)

$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{ea}
Sr1	0.8109 (2)	0.2279 (2)	0.6622 (2)	4.8
Sr2	0.4931 (2)	0.6152 (2)	0.1964 (2)	5.5
Sr3	0.1528 (2)	0.3511 (2)	0.6644 (2)	4.1
Ni1	0.0000	0.0000	0.5000	3.8
Ni2	0.3252 (2)	0.3897 (3)	0.3735 (3)	2.2
P1	0.3739 (4)	0.8990 (5)	0.0626 (6)	1.7
P2	0.7124 (5)	0.5734 (6)	0.0085 (6)	3.6
P3	0.9566 (4)	0.9319 (6)	0.2117 (6)	4.2
011	0.498 (1)	0.866 (2)	0.134 (2)	10.7
O12	0.344 (1)	1.048 (2)	0.101 (2)	6.7
013	0.356 (12)	0.898 (2)	-0.112 (2)	4.0
014	0.295 (1)	0.793 (2)	0.111 (2)	13.0
O21	0.836(1)	0.518 (2)	0.063 (2)	5.8
O22	0.703 (1)	0.629 (2)	-0.146 (2)	12.4
O23	0.627 (1)	0.463 (2)	0.031 (2)	8.3
O24	0.684 (2)	0.686 (2)	0.115 (2)	6.6
031	0.976 (1)	0.844 (2)	0.359 (2)	4.5
O32	1.063 (1)	0.916 (1)	0.130 (2)	4.0
O33	0.848 (1)	0.882 (2)	0.109 (2)	8.0
O34	0.944 (1)	1.074 (2)	0.272 (2)	6.6

Elbali, B., Boukhari, A., Holt, E. M. & Aride, J. (1992). Acta Cryst. Submitted.

Hemon, A. & Courbion, G. (1990). J. Solid State Chem. 85, 164-168.

Jakeman, R. J. B. & Cheetham, A. K. (1988). J. Am. Chem. Soc. 110, 1140-1143.

Kostiner, E. & Rea, J. R. (1974). Inorg. Chem. 13, 2876-2880.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

- Mathew, M., Schroeder, L. W., Dickens, B. & Brown, W. E. (1977). Acta Cryst. B33, 1325-1333.
- Nord, A. G. & Kierkegaard, P. (1986). Acta Chem. Scand. 22, 1466-1474.
- Regnault, L. P. (1976). Thèse de 3^e Cycle. Grenoble, France.
- Roux, P., Loüer, D. & Bonel, G. (1978). C. R. Acad. Sci. Sér. C, 286, 549-551.
- Rubenstein, M. & Rubenstein, S. (1987). Chem3D. The Molecular Modeling System. Cambridge Scientific Computing, Inc., Cambridge, Massachusetts, USA.
- Shoemaker, G. L., Anderson, J. B. & Kostiner, E. (1977). Acta Cryst. B33, 2969-2972.
- Stephens, J. S. & Calvo, C. (1967). Can. J. Chem. 45, 2304-2312.
- Stephens, J. S. & Calvo, C. (1969). Can. J. Chem. 47, 2215-2225.
- Stewart, J. M. (1978). Editor. The XRAY78 System version of 1978. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
- Zachariasen, W. H. (1948). Acta Cryst. 1, 263-265.

Comment

Compounds with the hexagonal Nb₃Se₄ structure (Smeggil, 1971) are of great interest because of their quasi-one-dimensional metallic properties (Amberger, Polborn, Grimm, Dietrich & Obst, 1978; Biberacher & Schwenk, 1980; Ishihara & Nakada, 1982, 1983; Ishihara, Nakada, Suzuki & Ichihara, 1984; Bensch, Koy & Biberacher, 1992a). During a systematic study of compounds with the Nb₃Se₄ structure with respect to their physical properties, hexagonal V_3S_4 was prepared by a topotactic redox reaction of $K_{0.7}V_6S_8$ with water. $K_{0.2}V_6S_8$ was reported not to be hygroscopic (Bronsema & Wiegers, 1987). In contrast, $K_{0.7}V_6S_8$ is highly air sensitive and reacts immediately with water to give V_3S_4 . The preparation of the compound by a topotactic redox reaction using $Tl_x V_6 S_8$ (x = 0.8) (Vlasse & Fournes, 1976) as starting material leads to products which contain small amounts of Tl ($x \approx 0.03$) (Bensch, Koy & Wesemann, 1992). $Tl_x V_6 S_8 (x = 0.8)$

Fig. 1. A triple unit of three face-sharing VS₆ octahedra connected by a common edge to the neighbouring VS₆ octahedron. The common faces are indicated by the broken double lines, the common edge by the broken single line. Probability ellipsoids have been drawn at the 75% probability level (T = 295 K).

Fig. 2. Polyhedral representation of the structure of hexagonal $V_{\rm 3}S_{\rm 4}.$

© 1993 International Union of Crystallography

Acta Cryst. (1993). C49, 1133-1135

Structure of Hexagonal V₃S₄ Determined at Three Different Temperatures

WOLFGANG BENSCH AND JÜRGEN KOY

Institute for Inorganic Chemistry, University of Frankfurt, Niederurseler Hang, 6000 Frankfurt am Main 50, Germany

(Received 22 July 1992; accepted 24 November 1992)

Abstract

Hexagonal trivanadium tetrasulfide, V_3S_4 , is isotypic with Nb₃Se₄ and Tl_xV₆S₈. In contrast to Tl_xV₆S₈, the hexagonal channels are empty. Quasi-onedimensional metal zigzag chains lie parallel to the crystallographic *c* axis with V—V distances of 2.864 (1) Å within the chains and 3.120 (1) Å between the chains. The crystal structure was determined at 295, 170 and 100 K. The contraction of the lattice with falling temperature is isotropic. V₃S₄ is metastable and transforms into the monoclinic V₃S₄ modification at elevated temperatures.